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Abstract

Petri net (PN) is a graphical modeling tool used to learn the behaviour of a
discrete-event type dynamical system using one of its analysis technique, Reach-
ability. Boolean Petri Nets(BPNs) is one such variant in PNs that generate every
possible binary n-vector in their Reachability analysis. It is used to study the safe
systems that can be applied to optimize resource allocations, database systems,
etc. The problem of generating binary vectors is limited only to a certain defined
Petri Net graph. We extend the concept of BPNs by studying Crisp BPNs and
its reachability analysis. We initialize by constructing BPNs from the Minimal
Crisp BPNs and adding on some more Nets in BPNs that generate all possible
binary vectors as a subset of the marking vectors in their reachability.
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1 Introduction and Preliminaries

Mathematical modeling using Petri Nets offers good visualization and understanding
of structurally and behaviorally discrete dynamic systems. From many of the graph
theoretical[9, 13] concepts, Petri Net(PN) is one graphical modeling tool that was
introduced during 1960s and has been used extensively since then in many areas
of science[17-19, 22]. Several new types of Petri Nets(PNs) have been introduced
depending on the systems’ modeling requirements[1]. Meanwhile, Boolean Petri Nets
[4] (Abbreviated as BPN) came into the picture that corresponds to the class of PNs
that generate all binary marking vectors at any stage of its reachability[5]. Their
application is in studying the safe systems that include all possible binary n-vectors
[8, 24]. This study introduced a novel idea of Crisp Boolean Petri Nets [11], which has
a count of one of each of these binary n-vectors during their reachability analysis. The
authors here show their interest in studying the Crisp BPN, and their analysis and
conclude with new results in the theory. For this purpose, initializing by introducing
Crisp BPNs as defined by [15] and then constructing Star PN using the Crisp BPN is
shown in section 2. The motivation behind studying the Minimal Crisp BPNs is that
they generate all the binary n-vectors in their first level of reachability depicting the
topology of a star graph. Converting minimal Crisp BPNs into BPNs will generate
all the binary vectors of higher dimensions more quickly than in the minimum and
minimal Crisp Boolean Petri Nets[7, 15, 16]. We have analyzed the constructed Net
and concluded with the results in the next sections.

Though researchers define Petri Nets differently[2, 20], their idea remains intact. In
the manuscript, we follow Murata’s [6] definition of Petri Net i.e. N = (P, T, F, W, uo).
Here P(Places) and T'(Transitions) represent two disjoint finite set of nodes of a graph,
F represents the set of directed arcs between the nodes and W represents the 'weight
function’ mapped from the set of directed arcs to the non-negative integers. Graphi-
cally we denote the set P using circles and the set T' using rectangles. Petri Net graph
is a representation of the PN that is a ’directed bipartite multigraph’ in which the
node set of the graph is PUT, the arc set is F', and pg is the k —vector associated with
P that represents the initial marking of the graph where k& = |P|. The non-negative
integer values in the k — vector are count of tokens in the places of the Net. Tokens’
are associated the set P and denoted using dots inside the circles graphically. With
the graph, we associate events in any discrete system that takes place based on the
conditions of that system. This behavior is modeled using the execution rule of the
PN. This rule is divided into two parts:

Enabling condition for a transition:

1. Enabled transition means that it contains at least the count of tokens in each of its
input places as the weight of the incident arcs from the place to the transition.

2. Firing of transition: Any transition fires when w(p, t) number of tokens from each of
the respective input places of that transition is removed and w(t, p) number of tokens
are added to each of the output places of the transition. This changes the current state
of the PN. 'w’ here denotes the weight of the respective arc from p to ¢ or vice-versa.

Execution Rule in a Petri Net: PN executes by firing of transitions; that transition
must be enabled for firing of a transition. Also not every enabled transition fires, it
depends upon the system requirements. This execution gives us different states of the
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Petri Net. Fig. 1 explains a Petri Net and shows the transition firing that results in
the different states of the Net.
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Fig. 1 Illustrative example of firing in a PN with puo = (1,1,0,1)

The structural and behavioral analysis of a PN is using Matrix Analysis and Reach-
ability Analysis techniques. We adopt the latter in the work since it is more expressible,
easy to understand, and comparatively quick to analyze any net.

Any system needs to function correctly after its design and that is where we
encounter the problem of reachability. We are concerned about whether the designed
system is able to reach some particular state/marking or not. If yes, what can be the
firing sequence that gives us that marking? This is stated in the reachability problem
[21]. Hence, any marking pu; is reachable from the initial marking po whenever a tran-
sition firing sequence (say o;) exists. Formally, u; € R(N, pp) where R(N, po) denotes
the set of all reachable markings of the PN N and is known as the reachability set.
Sometimes, it is also possible that we reach p; with more than one firing sequence
which gives us the different functional behavior of the system to reach a particular
state.

In Fig. 2 pq, pe, ps are the reachable markings from the initial marking . Evalu-
ating from Fig. 1, uo = (1,1,1,0) and p1, pe, us equals (0,0,1,1),(0,0,2,0),(0,0,0,0)
respectively in Fig. 2. The green color of pg in Fig. 2 depicts the initial state in the
PN while the green color of transitions in Fig. 1 shows that the transitions are enabled
in the respective state of the PN.

Conflict and parallelism in PNs: Consider a situation in a PN in which more than
one transition having at least one common place is enabled such that the firing of one
transition will disable another transition in a PN. In that case, which transition will
fire first? This situation created in a PN is the situation of conflict. There may be
events that require the firing of the first transition while some may require the firing
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Fig. 2 Reachability analysis of PN shown in Fig.1

of other transitions. Hence, while modeling it is an important aspect that needs to
be taken care of. On the other hand, some events can work independently in a given
system, i.e. there is no common place among the enabled transitions, and the firing of
one transition will not affect the other transition. These enabled transitions can work
independently in a PN. Such a situation in a Petri Net is termed as Parallelism in the
Petri Net. These terms are useful while structural modeling of a system in a Petri Net.

2 Construction of Source Petri Net

For constructing a Source Petri net, we use the concept of Boolean Petri nets(BPNs).
Boolean Petri Nets(BPNs) belong to a class of Petri Nets that follows all the definitions
of a PN but differ only in the reachable markings of a PN. Simplifying the conventional
definition of BPNs, the markings in the reachability analysis of these PNs are all
possible marking vectors of a Boolean hypercube [6]. If PN is Boolean then the initial
marking vector of the Net is (1, 1,...,1), and the vectors in its reachability tree are all
possible combinations of 0 and 1 and out of which 2* are unique, where k is the number
of places on the Net. The reason why BPNs have been chosen in the study is because
they are used to study safe systems in many applications like control systems. More
refinement in the concept of Boolean Petri nets is studied using Crisp Boolean Petri
Nets. Crisp Boolean Petri Nets[15] correspond to those Boolean Nets that generate 2%
Boolean marking vectors exactly once in their reachability i.e. |R(N, uo)| = 2.

Fig. 3 shows a generalized Crisp Boolean Petri Net where |P| = k and |T| =
2% — 1. Interestingly, the underlying graph of the reachability tree of any Crisp BPN
is isomorphic to a Star graph Kj ,x_;. As an example, the reachability tree of a
Crisp Boolean Petri Net is shown in Fig. 4 One can refer to [11, 12] for a complete
study concerning the topic. In the paper, the authors show interest in the Star graph
property of the reachability graph of the Crisp BPN. We construct a Petri Net using
the directed graph of the reachability tree of minimal Crisp Boolean Petri Net.

The reachability tree generated while analyzing the Crisp Boolean Petri Net is
isomorphic to the graph Ky ,x_; with all of its arcs directed downward.
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Fig. 4 Reachability tree of Crisp Boolean Petri Net with k = 4 places

2.1 General construction steps for Source Petri Net

It is to keep in mind that for any number k of the places in the Crisp Boolean Petri Net,
the markings generated in the reachability tree are 2* (including the initial marking
vector). We subdivide K or_; Star graph to construct the Boolean Petri Net of order
2% — 1. The general construction steps for creating a Source Petri Net are given as-

Step 1. Replace the marking nodes of the tree with the transitions, labeling each
marking such that every unique Boolean marking vector u; is labeled as T; (including
root node) where 0 <i <2* — 1 andi € Z.

Step 2. Subdivide every arc (Tp, T;)Vi by a place node and label every correspond-
ing place as P; where 1 <1 < 2k _1andie Z. (It is important to note that labeling
should be assumed similar for both the places and corresponding transitions without
any loss of generality. For eg. Ty — Py — T5.)

We call this constructed Petri Net as a Source Petri Net of order (2% — 1) since it
contains a source transition associated with each of its places.

As an example, the Petri Net constructed using Star reachability tree (isomorphic
to K7 7) of Crisp Boolean Petri Net with & = 3 is shown in Fig. 5 and we call it Source
Petri Net of order 7.

From the construction, we infer that the number of transitions in the defined Source
Petri Net will always be 2¥ and the number of places will be 2¥ — 1 using the fact that
if a Star graph contains n number of vertices then it has n — 1 number of edges.
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Fig. 5 Source Petri Net of order 2 — 1 constructed for k = 3

2.1.1 Artificial place

The place introduced in the model is just to limit the firing ability of a source transition
and does not contribute to the marking of the Petri Net. We define it as an Artificial
place. For instance, Py is the Artificial place in the Fig. 6 depicted using a dotted
outline that has no role in marking of the net.

3 Analysis and Results

In this section, we characterize the constructed Source Petri Net and dig out some
useful information out of it. Characterization plays an important role in understanding
a system as discussed in [23]. Since we have already discussed that the transition Tp
is a source transition for every place in the Petri Net while all other transitions are
sink transitions. This results in an infinite reachability tree of the Petri Net generating
every possible marking vector. The reachability tree is a complete ocean that depicts
all the possible states of the system in every possible firing of transitions. Since, source
transition is the reason behind creating the infinite reachability tree, we need to restrict
the infinite firing of this transition and to deal with the concern, different cases can
be considered.

3.1 Casel

Reversing the direction of arcs from Ty to P; in the Source Petri Net and assigning
initial marking 1 to every place P; for 0 < i < 2¥ —1 to make a finite reachability tree
for analysis. Interestingly, this construction gives us Petri Net isomorphic to 1-safe
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Star Petri Net S,, in Boolean Petri Nets that has already been discussed in [4](Refer
Figure 1. in [4]) Below is the proposition that has been discussed as a part of the case.

Proposition 1. Source Petri Net for 28 — 1 places, after reversing all the arcs from
Ty to P;, is isomorphic to the 1-safe Star Petri Net S, ([4]) corresponding to its order.

Proof. Let us consider the Source Petri Net graph constructed using Crisp Boolean
Petri Net of k places. As suggested in Case I, we reverse the direction of arcs from
Ty to P; in the Source Petri Net and assign initial marking 1 to every place P; for
0 < i < 2% — 1. The Petri Net graph contains 2¢ — 1 places and 2* transitions. The
corresponding order of places and transitions of 1-safe Star Petri Net S, contains n—1
places and n transitions. This implies n ~ 2. We need to prove that both these graphs
are isomorphic.

Number of places and transitions in the graphs are same for n = 2%. Sufficient con-
ditions to prove isomorphism will be the same adjacency matrix for the corresponding
undirected graphs and oriented in the same direction. Another way to prove isomor-
phism is by showing one-on-one correspondence between the graphs. We use the latter
one.

Map the place nodes P; (representation of place in Source Petri Net graph) with
p; (representation of place in 1-safe Star Petri Net S,,) for every n = 2¥ and i € N.
Similarly, map the transition nodes T; (representation of transition in Petri Net graph
constructed using Crisp Boolean Petri Net) with ¢; (representation of transition in
l-safe Star Petri Net S,,) for every n = 2¥ and i € N and Ty ~ t,41. This proves
isomorphism between the graphs. O

3.2 Case II

Removing the central transition Ty and its associated arcs and assigning initial marking
1 to every place P; for 0 < i < 2¥—1 for finiteness in the reachability analysis. This can
be studied as a subcase of the work discussed in [3] that generates hypercube and mesh
networks as an underlying graph of their reachability. Hypercubes and other network
topologies are studied in different aspects also, that is a different area of research.[10]

3.3 Case III

Adding an artificial place Py to the source transition T such that the transition is not
a source transition anymore (Refer Fig. 6). In this case, we do not need to add tokens
to every place instead we can add a token to Py and our purpose is solved. The rule
we will follow is, as soon as Ty fires remove the artificial place Py. This can also be
thought of as the firing of transition T only once when it is a source transition. For
k = 3, the resulting Petri Net after firing Ty and removing Py is the same as in Fig. 5
but with initial marking (1,1,1,1,1,1,1).

We consider here the third case and denote this class of Petri Nets as Flying Swing
Petri Net (FSPN) that is dependent on the value of £ € N in Crisp Boolean Petri
Net.
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Fig. 6 Source Petri Net of order 2 — 1 constructed for k = 3

3.3.1 Flying Swing Petri Net

Flying Swing Petri Net(F'SPN) can be defined as 5-tuple FSPN = (P, T, F,W, 1)
where,

P={P,Ps,..., Por_1},

T={To,T1,....Tox_1},

FC(PxT)U(T x P),

W F — {1},

wo = (0,0,0,...,0).
such that Ty remains the central transition acting as an input transition for all the
places and rest remain sink transitions with exactly one input place.

NOTE: It is important to note that the place P, is an Artificial place that has no role
in the markings of the Net i.e. Py ¢ P. It is introduced to limit the firing of transition
To.

Theorem 2. Every binary (2 — 1)— wvector is generated in the reachability analysis
of Flying Swing Petri Net FSPN = (P, T, F,W, uy) where |P| = 2F —1, |T| = 2% with
initial marking po =0 VP, € P and i,k € N.

Proof. We prove this using Mathematical Induction.

We know that the total number of unique binary k-vectors is 2¥. For k = 1, the
total binary vectors are 2! = 2. These are specifically 0 and 1. The FSPN constructed
for k = 1 contains 2 = 2 transitions (7p,7}) and 2' —1 = 1 place (P;) such that T, —
Py — Tj. One time firing of Ty using an artificial place Py results in the marking (1)
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and further firing of T} results in the marking (0). Hence, R(F'SPN, o) = {(0), (1)}
and |R(FSPN, )| = 2 where po = (0). Hence, the results hold true for k = 1.

For k = 2, the total binary k- vectors are 22 = 4. These are specifi-
cally (0,0), (1,0), (0,1) and (1,1). The FSPN constructed for ¥ = 2 contains
22 = 4 transitions (Tp,T%,T,T3) and 22 — 1 = 3 places (P, P, P3). One
time firing of T, using an artificial place P, results in the marking (1,1,1)
and further firing of Ty, 7o and T3 results in the markings (0,1,1), (1,0,1)
and (1,1,0) respectively. This continues until all the transitions are dead in
the FSPN. The reachability graph is shown in Fig. 7. It clearly states that
R(FSPN,u5) = (0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,0,1),(0,1,1),(1,1,1)
and |[R(FSPN, jig)| = 23 = 8 where o = (0,0,0). Hence, the results hold for k = 2.

(0,0,0)

To

(1,1, 1)

(0,0,0)

Fig. 7 Reachability graph constructed for F'SPN with k =2

Let us suppose that the result holds true for kK = r. This implies p; =
(1 (Pr), i (P2),y oy pri(Par—1)) € {0,1}2" 71, i.e. total number of unique binary vectors
are 22 =1 in FSPN with 2" — 1 places, 2" transitions and |R(FSPN, ug)| = 22" !
where po = (0,0,0...,0). Now, for £ = r + 1, the number of places in FSPN will be
2+l — 1 and number of transitions will be 2"t1. We must calculate the number of
binary vectors in the reachability analysis of such F'SPN. For the marking vectors,
initially, we require the difference in the number of places (2" 71 — 1) — (2" — 1) = 2".
Hence, we have the marking vector u; = (i (P1), i (Pa), .oy tbi (Par—1)y ey pti (Par+1_1))
as an intermediate state in FSPN with 2"t! — 1 places and 2" transitions.
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Consider the marking vector pu; = (p;(P1), i (Pa), -y it (Par—1), pr; (Par)). We aug-
ment the markings p; = (ui(P1), i (Pa), ..oy f1i(Par_1)) € {0,1}2 =1 and p;(Pyr) since
for u;(Por) we have two possible markings, 0 or 1. Hence, the total possible binary
vectors will be 22" ~1.2 = 22" This implies y1; = (115 (P1), pri(Ps), .., pi(Por)) € {0,1}2".

Proceeding in the same way for p; = (ui(P1), pi(Ps), ..., pri(Por)) € {0,1}?" and
wi(Pary1), total binary vectors will be 22"+1 Hence, continuing in the same way for
2" more places in the Net, we have 2" transitions associated with them that will fire
creating every possible marking that is binary i.e. total number of binary vectors for
the marking 1; = (115 (P1), p1i(Pa), ooy pri(Por—1), ooy i (Port1_1)) willbe 227 71.2.2..2 =
92" —14+2" — 92" =1 This implies |R(FSPN, po)| = 22" ! for FSPN with 27+! — 1
places and 2"+! transitions as the required result.

Hence by mathematical induction, we can say that every binary (2¥ — 1)—vector
is generated in the reachability analysis of Flying Swing Petri Net FSPN =
(P, T,F,W, uuo) where |P| = 2% — 1, |T| = 2* with initial marking uy = OYP; € P and
1€ N. O

Why choose this model? The model constructed is a safe persistent net that can
also be transformed into a marked graph [14]. We consider here an example of the
theorem discussed in this section to validate the results. Let us assume k& = 3. Hence,
FSPN = (P, T,F,W, o) where |P| =23 —1 =17, |T| = 23 = 8 with initial marking
uo = (0,0,0,0,0,0,0). Construction of Source Petri Net for &k = 3 is the same as
shown in Fig. 5. We are initiating the firing of transition 7Ty in the Petri Net using
an artificial place results in the marking (1,1,1,1,1,1,1). We need to validate the
result by generating all the possible binary 7—vectors in its reachability. We have
used Python3 for the reachability and validated our result as shown in Fig. 8. It
depicts to us the number of unique reachable nodes we have generated is equal to
|R(FSPN, uo)| = 27 = 128.
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Fig. 8 Reachability graph constructed for FSPN with k = 3

4 Conclusion and Discussion

The concept of Boolean Petri Nets has been explored from different perspectives and
different methods to analyze. Crisp Boolean Petri Nets are of special interest because
of their uniqueness in marking vectors of their reachability. We project here different
possible cases to generate all the binary vectors in its analysis highlighting the previ-
ous work contributed in this direction. The results have been validated but the state
space explosion in reachability is another problem here difficult to deal with. One
other limitation is that we have the generated Boolean Petri Nets for some specific
order only. Other marking vectors than of order (2® — 1) are not generated here due
to focus on the generation of boolean marking vectors only. This gap can be explored
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when focusing on the number of places in the net. Researchers are motivated to look
into the problem and work towards this direction.
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